Discussion Problems for Math 180

Thursday, March 5, 2015

Review

1. If $f(x)=\tan ^{-1}(3 x-2)$, what is $f^{-1}(x)$?
2. Find the first and second derivatives of each function:
(a) $5 \sin (x)-4 \cos (x)$
(b) $x e^{-x^{2}}$
(c) $\tan ^{-1}(x)$
(d) $\frac{2 x-3}{x-5}$
3. For what positive value of x is x^{x} the smallest?
4. Prove that $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$ using implicit differentiation.

This time
5. On which intervals is $x e^{-x^{2}}$ increasing? Decreasing?
6. On which intervals are the following functions concave up? Concave down?
(a) $x^{4}-2 x^{3}+1$
(b) $\frac{2 x-3}{x-5}$
7. Sketch the graph of a differentiable function $f(x)$ on $(-\infty, 0) \cup(0, \infty)$ such that $f^{\prime}(x)<0$ for $x<0$, $f^{\prime}(x)>0$ for $x>0$, and $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=2$.
8. A patient comes into the emergency room with a myocardial infarction. You administer nitroglycerin as a vasodilator, causing the radii of the blood vessels to increase by 2% per minute. The Hagen-Poiseuille equation from fluid dynamics tells us that the blood flow through a vessel is directly proportional to the fourth power of its radius. The flow must increase by at least 10% per minute or your patient will die. What happens?
(Hints: You're given r^{\prime} / r and need to find Q^{\prime} / Q, where Q is the blood flow. You know that $Q=k r^{4}$ for some constant k. Don't worry about whether you've seen a problem like this before, just start doing the calculations and see what happens. Guessing whether the patient lives or dies without any support will not earn much credit.)

