Discussion Problems for Math 180

Thursday, March 5, 2015

Review

- 1. If $f(x) = \tan^{-1}(3x 2)$, what is $f^{-1}(x)$?
- 2. Find the first and second derivatives of each function:
 - (a) $5\sin(x) 4\cos(x)$
 - (b) xe^{-x^2}
 - (c) $\tan^{-1}(x)$ (d) $\frac{2x-3}{x-5}$
- 3. For what positive value of x is x^x the smallest?
- 4. Prove that $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$ using implicit differentiation.

 $This \ time$

- 5. On which intervals is xe^{-x^2} increasing? Decreasing?
- 6. On which intervals are the following functions concave up? Concave down?
 - (a) $x^4 2x^3 + 1$ (b) $\frac{2x - 3}{x - 5}$
- 7. Sketch the graph of a differentiable function f(x) on $(-\infty, 0) \cup (0, \infty)$ such that f'(x) < 0 for x < 0, f'(x) > 0 for x > 0, and $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 2$.
- 8. A patient comes into the emergency room with a myocardial infarction. You administer nitroglycerin as a vasodilator, causing the radii of the blood vessels to increase by 2% per minute. The Hagen-Poiseuille equation from fluid dynamics tells us that the blood flow through a vessel is directly proportional to the fourth power of its radius. The flow must increase by at least 10% per minute or your patient will die. What happens?

(Hints: You're given r'/r and need to find Q'/Q, where Q is the blood flow. You know that $Q = kr^4$ for some constant k. Don't worry about whether you've seen a problem like this before, just start doing the calculations and see what happens. Guessing whether the patient lives or dies without any support will not earn much credit.)